
2006-01-0862

Model Based Embedded System Development for In-Vehicle
Network Systems

Joonwoo Son
Daegu Gyeongbuk Institute of Science & Technology – Department of Mechatronics

Ivan Wilson
DsysD Ltd.

Wootaik Lee
Changwon National Univ. – Department of Mechatronics

Suk Lee
Pusan National Univ. – School of Mechanical Engineering

Copyright © 2006 SAE International

ABSTRACT

This paper aims for a seamless development process for
automotive body network system development with
model-based approach. It also describes a generic
software architecture that provides clear-boundaries
between the software components and that can also act
as a guide for each development phase. The CASE tool
Statemate is used for feature behavioral modeling and
verification. NodeAllocator builds the ECU models by
mapping the behavioral model and physical network
architecture. The virtual prototypes and the basic bus
communication information are created and validated
using software in loop simulation. The validated
functional models are refined for implementation models
and MicroC is used for application task code, OS design
and software integration.

INTRODUCTION

The automotive embedded system becomes even more
complex and occupies more portion of vehicle price
lately [1]. In order to design products which achieve an
improved functionality and reliability keeping the costs
and complexity of the system limited, automotive
industries apply a system approach for the body network
system development [2]. Furthermore, short time-to-
market cycles and a considerable number of variants
require a well-structured development process such as
Model Based Development Process (MBDP) and
generic software architecture supporting the reuse of
components at all phases. The MBDP follows the widely
accepted conventional software development V-process
to facilitate the understanding and early validation of the
requirements [3]. Figure 1 shows a typical V-process for
model based development process. Some CASE

(Computer Aided Software Engineering) tools support
MBDP to easily adopted, but the CASE tools can’t cover
all the process. Therefore, most of MBDP researches
contain their own effort to fill up the gaps between CASE
tools [1][4][5][6][7][8]. Another challenge in MBDP is the
efficient integration of software components such as
auto-generated code, legacy code and the other
commercial software components. This paper aims for a
seamless development process for automotive body
network systems with structured methods fully supported
by CASE tools, Statemate/MicroC. It also describes a
generic software architecture which is devised to
achieve the technical goals of modularity, scalability,
transferability and reusability of functions [9]. A case
study on automotive network system for window lift
feature was demonstrated.

Figure 1. V Process for Model-Based Development

MODEL BASED DEVELOPMENT PROCESS FOR
IN-VEHICLE NETWORK SYSTEM

MBDP attempts to improve quality and reduce cycle time
by using modeling and its ability to simulate to introduce
early validation of requirements. The V-process is a
process which provides continuous focus on the
requirements of a customer by documenting require-
ments at the start of development, designing according
to those requirements, implementing those requirements,
and finally validating based on the input customer
requirements. In order to achieve a successful
integration of model based processes, the definition of
the various process steps is essential. Usually, model
based development process consists of following major
steps [1][3]:

• Requirements Capturing and Analysis
• Functional High Level Modeling
• Architecture Design and Partitioning
• Implementation Modeling
• Auto-Code Generation and Model Optimization
• Software Integration and Build

REQUIREMENT CAPTURING AND ANALYSIS

The success of any product development is dependent
on the creation of clear, complete, and un-ambiguous
requirements [3]. Incomplete requirements lead to the
implementation engineers filling the gaps to the best of
their ability. Not too much of a problem when it is a
complete system, but in a distributed system this is a big
problem as other engineers have to rely on information
coming from all over the system. Ambiguous require-
ments tend to mean that the delivered system does not
exactly do what was originally intended. Poorly
understood requirements are usually due to a lack of
knowledge of the system; this will always result in a bad
design. Therefore, the requirement capturing and
analysis phase must be formalized. These requirements
should be testable, traceable, and able to be
implemented.

FUNCTIONAL HIGH LEVEL MODELING

According to requirement capturing document, functional
models should be created. But the vehicle electronic
system is too large to be address in one goes, so break
it down according to function groups. For example,
power seat control, window control, heating and
ventilation, exterior lighting control and so on. Once the
main sub-systems have been identified, ensure that the
information flowing into and out of them is clearly
defined. Perhaps a particular sub-system will be
delivered from a supplier, and as such it will need to be
a well-bounded system for them to work with. Next break
these sub-systems down further into features that the
sub-systems will have to deliver. Top-down design
approach is suitable for this process. While building the
functional model, Statemate simulation feature provides

testing and validating capabilities. A virtual prototype can
be created to communicate with customer or the other
project members. These features enable us to test and
validate the software functionality without hardware in
early stage. Using the virtual prototype, test plan should
be specified in detail and the specified plan will be used
an actual prototype and product validation as well.

ARCHITECTURE DESIGN AND PARTITIONING

When the behavioral model is released, two kind of
works are started, one for network system development
and the other for ECU (Electronic Control Unit) software
development. In this subsection, the work for network
system development will be described. Considering the
amount of data and functionality that the embedded
systems contain and the exponential increase in
complexity, the partitioning process can often be error
prone, time consuming and labor-intensive. In this
project, NodeAllocator, the add-on tool for Statemate,
was used to allow quick and easy functional trade off
analysis to try different allocations of functional logic
blocks to physical nodes to determine a realistic and
cost effective solution to the system architecture.

Network Architecture Design and Partitioning

The NodeAllocator allows system designers to create
network architectures comprising of ECUs connected by
networks. The functionality, as designed in Statemate, is
allocated to the ECUs by the architecture designer. The
NodeAllocator calculates the network traffic, static
busload and gives system completeness feedback to
ensure all signals have a source and a sink. ECU
models are then created by the NodeAllocator in
Statemate ready for implementation. NodeAllocator also
provides us with the basic CAN database file including
ECU node and exchanged signal information. The
system engineer can group the signals into some
message to optimize the network performance. The
created CANdb file will be used for two purpose; one for
network simulation and the other for auto-code
generation of network embedded software. Vector’s
CAN database acts as a standard format of automotive
CAN and LIN network information. This database file
contains the information about Rx/Tx nodes, messages,
signals and transmission strategy and so on. Figure 2
shows partitioning process and CAN database usages
for network system design.

Network Simulation Environment Development

Before the time, effort and expense of building a
prototype is taken, the model should be tested as a unit
with other models from the system. This ensures system
integration as early as possible in the design. The
distributed system simulation is achieved by linking
Statemate with CANoe, enabling an ECU model to
interact with a system under the real-time constraints of
a live network. This is used initially to dynamically test
the entire network architecture design and later on to
enable parallel ECU development. In order to simulate

Functional Model Physical Model

Embedded Kernel Network Simulation

the network model on CANoe environment, proper CAN
database must be created by grouping the signals into
the messages and adding some information.

IMPLEMENTATION MODELING

Once the system design and ECU designs have been
validated on the virtual car, the designs should be
moved to the implementation phase. To generate code
for embedded applications, all the software design,
implementation details and constraints has to be
imposed into the model such that the generated code
can satisfy all the requirements.

Figure 2. Partitioning Process and CAN Database
Usage

AUTO-CODE GENERATION AND MODEL
OPTIMIZATION

The auto-code generation includes code generation,
model optimization and validation. The model
optimization process is to replace the less efficient
modeling representation with the equivalent
representation that can yield the most efficient code.

SOFTWARE INTEGRATION AND BUILD

The software integration links all source code including
generated application code, I/O device drivers,
communication kernel and operating system code.
Generic software architecture helps the software
integration of application behavior, hardware drivers and
commercial software components. The generic software
architecture will be described in the next section.

GENERIC SOFTWARE ARCHITECTURE

To achieve the technical goals of modularity, scalability,
transferability and reusability of functions, while also
affording a high degree of early testability, a Generic
Software Architecture was deemed necessary. In this
project, AUTOSAR layered approach was mimicked to
obtain the advantages [9][10].

SOFTWARE ARCHITECTURE OVERVIEW

A layered architecture, Figure 3, was devised so that all
software components are isolated from one another by
the middleware. Once the middleware API was specified
it allowed the components, including the application, to
be developed separately.

OS AND MIDDLEWARE DESIGN

The Generic Architecture was devised to be fully ANSI C
code compliant and OS independent. The tasks were
serviced by a simple scheduler running in an infinite
single main loop. MicroC has the ability to generate code
using templates which can be highly customized using a
built in tool. In this case they were tailored to a scheduler
with 3 attributes to define the cycle time, starting time
and task name, in order to assign the execution time slot
for each task.

Figure 3. Generic Software Architecture

Designed in Statemate and
Implemented in Rhapsody MicroC

Middleware

IO Device
Driver CAN &

Bus Kernels
CAN & LIN

Diagnostic
Kernel

Node
Manage-

ment

BootLoader

EEPROM
Driver

Application

Drag & Drop

The middleware isolates the software components from
one another. All data is transferred via the middleware
which can offer data buffers, call-backs, data conversion
and remote procedure calls.

LOWER LAYER DESIGN

At the beginning of model based software development,
clear cut boundaries between models and lower layer
drivers must be defined. Questions as to who
debounces data, converts the signals to engineering
units and manages I/O failure detection must be
answered. In this case it was decided that the
application should only receive good data in engineering
units.

I/O Device Drivers

I/O drivers provide functions with simple input and output
values or the result of an algorithm. They are either
called directly from the middleware when the data is
requested by the application or they are serviced from
an I/O Driver task that periodically polls the hardware
and writes the data to the middleware.

EEPROM Drivers

This manages non-volatile memory storage and recall.
EEPROM writing can be time consuming and
consequently must be done outside the normal
application execution loop to ensure real-time
performance.

Bus Kernels for CAN and LIN

The CAN/LIN kernel usually consists of smaller layers
based on OSEK-COM/NM. To ensure compatibility and
high quality, most of OEMs require suppliers use
commercial software components such as Vector
CANbedded.

Diagnostic Kernel

Diagnostic data is usually accessed via CAN bus. The
software architecture was designed to take advantage of
Vector CANbedded components, the CAN/LIN kernel
and the Diagnostics kernel.

Boot Loader

The Boot loader is an embedded software component
that establishes a connection between the development
or serial control unit as well as a main computer and
supports the downloading of application software onto
the control unit via the CAN or LIN buses.

Node Management

The Node Management Layer is used by the node to
control the start up, shut down, and error handling for a
node where these functions do not involve interaction

with other nodes of the network and can be managed
locally.

CASE STUDY – WINDOW LIFT CONTROL

This case study is based on an actual OEM project for
an automotive body network system development. This
paper describes the window lift control feature of body
network system.

The following functionality has to be considered:

• Manual / Automatic control of all 4 windows
• Child protection
• Primitive shut protection
• Restriction / extension of the functionality depending

on the status of other components (ignition, door
position, etc.)

REQUIREMENTS CAPTURING AND ANALYSIS

According to the key steps of MBDP, the requirement
capturing documents which describe functional behavior
and test scenarios should be created. The requirements
documentation includes the following aspects:

• Description of the customer use scenarios
• Context diagram describing all inputs and outputs
• A set of unwanted scenarios

FUNCTIONAL HIGH LEVEL MODELING

The functional high level model was built and validated
using Statemate simulation feature. Top level activity
chart, which acts as context diagram to show input,
output signal and tasks, was created after task
decomposition. Figure 4 illustrates the top level activity
chart. A virtual prototype was created to communicate
with customer and project members. The virtual
prototype helps to specify test plan in detail and the test
plan is used for an actual prototype and product
validation as well.

ARCHITECTURE DESIGN AND PARTITIONING

Network system development starts with physical
architecture. Physical architecture can be created by
analyzing the distribution of sensors and actuators, and
then selecting the optimal location and number of nodes.
Figure 5 shows the physical architecture of the windows
lift system. The windows lift system consists of CAN
network for front doors and LIN network for rear doors.
BCM (Body Control Module) has the role of gateway
between CAN and LIN buses. NodeAllocator builds the
ECU models by mapping the functional model to
physical model.

Network Simulation Environment Development

The ECU models are used for SILS (Software-In-the-
Loop Simulation) by linking CANoe network simulation

models. NodeAllocator also provide us with basic
CANdb information. The network traffic and static
busload information which calculated by the
NodeAllocator was used to design optimal message
grouping. CANoe SILS environment can help to verify
and examine the network system performance.

Embedded Network Software Design

In the automotive embedded software development,
communication network design is one of the most
complex and important parts lately. The most of
automotive OEM’s want to use a commercial software
component for their own network protocol by network
software experts such as Vector Cantech and Volcano
Automotive. In this project, Vector’s CANbedded
software is used for CAN communication kernel. This
tool generates the source codes for CAN communication
based on CAN database. The generated codes are
integrated through the middleware, the functions that
transfer Rx/Tx signals to the application are mapped
each data items on MicroC.

Figure 4. Functional Top Chart for Windows Lift System

Figure 5. Physical Architecture of Windows Lift System

IMPLEMENTATION MODELING

In order to generate code for embedded applications
from the released functional model, all the software
design, implementation details and constraints were
imposed into the model such that the generated code
can satisfy all the requirements.

AUTO-CODE GENERATION AND MODEL
OPTIMIZATION

During auto code generation work, model optimization
was conducted to get more efficient application code.

I/O DEVICE DRIVERS DESIGN

In this project, the lowest level of hardware I/O device
driver software was generated by micro-controller
configuration tool, Processor Expert. The key of the I/O
device driver design is to provide access to all hardware
resource via generic APIs. This design enables the
application software to be independent of the underlying
hardware platform. Thus, it makes the application
software portable. In order to communicate between I/O
data and application code via the middleware in the
generic software architecture, some codes are added by
hand according to the generic software architecture.

SOFTWARE INTEGRATION AND BUILD

Software integration work started with implementation
model, I/O driver software, CAN/LIN communication
kernel, diagnostic kernel, boot loader, and node
management code. Each software unit must be tested to
check the integrity of the functional behavior of the
generated code. The software integration work
continues the model based theme of early validation by
using the simulation environment of the implementation
model to revalidate the software model to the original
input requirements. The performance requirements and
constraints such as response time must be tested and
the result feedback to the implementation model and
software codes. For some critical sections, if the code
efficiency can’t be achieved by the automatically
generated code, the hand written code can be used to
replace model function blocks. The generic software
architecture, which defines the boundary of each
component and interface specifications and static
scheduler for the tasks, can reduce the integration effort
and errors. Thus, the reliability of designs are improved
through the use of a layered software platform that
allows for the easy integration of generate software.

CONCLUSION

Model based development processes, which follow the
widely accepted conventional software development V-
model, are becoming more and more popular in the
automotive industry. The objective of model based
software development is the creation of reusable,
reliable software components that are consistently
validated against the input requirements. This paper

focuses on a case study on automotive body network
system development using model-based approach and
the ideal interactive tool chains for the rapid introduction
of the model-based process in the automotive industry. It
also describes a generic software architecture that
provides clear-boundaries between the software
components and that can also act as a guide for each
development phase. The CASE tool Statemate is used
for feature behavioral modeling and verification, and
NodeAllocator builds the ECU models by mapping the
behavioral model and physical network architecture. The
virtual prototypes and the basic bus communication
information are created and validated using software in
loop simulation. The proposed generic software
architecture imitates AUTOSAR layered approach to
obtain the advantages for current products under
development whilst allowing a clear upgrade path to a
full AUTOSAR compliant architecture. It helps the
software integration of application behavior, hardware
drivers and commercial software components. The
validated functional models are refined for
implementation models and MicroC is used for
application task code and software integration. The code
for CAN communication kernels is generated by Vector’s
CANbedded. During this project, it was shown that
model based development process provides early-stage
system verification, software reusability, reduced
development time and software reliability.

REFERENCES

1. M. Mutz, M. Huhn and U. Goltz, “Model Based
System Development in Automotive,” SAE2003,
2003-01-1017, 2003.

2. R. Hadeler and H. Mathony, “Design of Intelligent
Body Networks,” SAE2000, 2000-01-0152, 2000.

3. Y. Dong, M. Li and R. Josey, “Model Based
Software Development for Automotive Electronic
Control Units,” SAE2004, 2004-21-0038, 2004.

4. R. Nossal and R. Lang, “Model-Based System
Development – An Approach to Building X-by-Wire
Applications,” IEEE MICRO, pp.56-63, July-Aug.,
2002

5. M. Rappl, P. Braun, M. Beeck and C. Schroeder,
“Automotive Software Development: A Model Based
Approach,” SAE2002, 2002-01-0875, 2002.

6. J. Bortolazzi, M. Ulrich and Thomas Raith,
“Functional Integration of E/E Systems,” SAE2000,
2000-01-C052, 2000.

7. M. Grosse-Rhode and Stefan Mann, “Model-based
Development and Integration of Embedded
Components: an Experience Report from an
Industry Project,” FESCA2004, 2004

8. W. Lee, S. Park and M. Sunwoo, "Towards a
seamless development process for automotive
engine control system," Control Engineering
Practice, Vol. 12, No. 8, pp.977-986, 2004.

9. J. Son, I. Wison, W. Lee and S. Lee, “Software
Architecture for Model Based Automotive System
Development and Its Application,” The 13th
International Pacific Conference on Automotive
Engineering, pp.520-524, Aug. 2005.

10. H. Heinecke and et al., “AUTomotive Open System
ARchitecture - An Industry-Wide Initiative to Manage
the Complexity of Emerging Automotive E/E-
Architectures,” SAE2004, 2004-21-0042, 2004.

11. J. Lemieux, Programming in the OSEK/VDX
Environment, CMP Books, USA, 2001.

12. http://www.ilogix.com, I-Logix Ltd.
13. http://www.dsysd.com, DsysD Ltd.
14. http://www.autosar.org, AUTomotive Open System

ARchitecture
15. http://www.vector-informatik.com, Vector Informatik

GmbH

CONTACT

The authors’ e-mail address:

json@dgist.ac.kr
ivan@dsysd.com
wootaik@sarim.changwon.ac.kr
slee@pnu.edu

DEFINITIONS, ACRONYMS, ABBREVIATIONS

MBDP: Model Based Development Process
SILS: Software-In-the-Loop Simulation
ECU: Electronic Control Unit
CAN: Controller Area Network
LIN: Local Interconnect Network
AUTOSAR: AUTomotive Open System ARchitecture

