Automated Testing for Automotive Embedded Systems

Dae-Hyun Kum', Joonwoo Son®, Seon-bong Lee’ and Ivan Wilson®

! Department of Mechatronics, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Korea
(Tel : +82-53-430-8455; E-mail: kumdh(@dgist.ac.kr)

* Department of Mechatronics, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Korea

(Tel : +82-53-430-8453; E-mail: jsoni@dgist.ac.kr)

? Department of Mechatronics, Daegu Gyeongbuk Institute of Science & Technology. Daegu, Korea

(Tel : +82-53-430-8450; E-mail: mecha@dgist.ac.kr)
* DsysD Ltd, Nottingham, England

(Tel : +44-115-9881211; E-mail: ivan@DsysD.com)

Abstract:

The automotive embedded system becomes even more complex and occupies more portion of vehicle price

lately. Therefore, automotive industries apply a model-based approach for the embedded system development. The
model-based approach improves quality and reduces cycle time by using modeling and its ability to simulate to
introduce early validation of requirements. This paper describes automatic test generation and execution techniques for
automotive embedded systems to maximize the early validation capabilities of model-based development process. The
proposed techniques can cover from the functional high level model validation to the auto-generated software
validation. For the functional model validation, a virtual prototype is used on the PC environment. A rapid prototype
and target execution and monitoring system, Target Suite, is developed for the generated software validation. We also
develop an automatic testing and analysis environment to manage the test executions and the corresponding results. The
proposed model-based automated validation techniques will go far forward to improving the reliability and

cost-effectiveness of the products

Keywords: Automated testing, Model-based development process, Automotive Embedded system

1. INTRODUCTION

The Automotive embedded system becomes even
more complex and occupies more portion of vehicle
price lately. In order to design products which improve
reliability and quality as well as reduce development
time and cost, automotive industries have been focusing
on well structured development process such as
model-based approach [1-2]. But to meet demand for
high quality and lower cost, it is becoming increasingly
necessary to rely on a new test systems and
methodologies in all phases of the product life cycle.

Erroneous automotive embedded software may cause
serious car accident related to human safety. Therefore,
it is essential to detect any errors in the embedded
software through various test processes. The embedded
software is often subject to change to meet customer’s
needs and its functionalities, so that it is desirable to
automate testing to improve efficiency of process.

Test automation consists of the following three steps:
test case generation, test execution and result analysis.
Many research efforts have been made at these
automation techniques. During the requirement
capturing phase, automated testing can be realized by
introducing formal language [3-5]. Automatic
generation of test cases from statecharts, control flow,
information flow and MSCs(Message Sequence Charts)
are widely used for specifying the dynamic behavior of
the model [6-8], and automation concerning test system
and process has been presented [9]. However, research
on seamless test automation based on model-based
approach has not been applied.

In this paper, several techniques are presented that
involves seamless test automation for automotive

4414

embedded systems. The proposed approach can cover
from high level model validation to the auto-generated
code validation in a real ECU(Electronic Control Unit)
Functional model is developed by using the I-Logix
Statemate. Test cases are automatically generated by
ATG(Automatic Test Generation) which allows
automatic test generation out of Statemate design. A
rapid prototype and target execution system,
Target-Suite is developed for wvalidation of
auto-genecrated code from the behavior model. In
addition, Test-Generator and Test-Analyzer is
developed to automate and improve test process.

2. TEST PROCESS

2.1 Model-based development process

Model-based development process®MBDP) s
introduced to improve quality and reduce cycle time.
Fig. 1 describes the Model-based development process
that follows typical V-process.

Development is started with requirement capturing
and analysis. The success of any product development is
depending on the creation of clear, complete and
unambiguous requirements. Functional model should be
created according to the requirement capturing
document. The vehicle electronic system is too large to
be addressed at a time. So it is often broken down
according to the functional groups. Once the main
sub-system has been identified, it is ensured that signals
for input and output of the system are clearly defined.
Virtual prototype of functional model enables us to test
and validate the software functionality without hardware
in the early stage. When behavior model is released,

ECU software development and network system
development are started at the same time.

Once the system design and ECU design have been
validated on virtual environment, the designs should be
moved into the implementation phase. To generate code
for embedded applications, all the software designs,
implementation details and constraints have to be
imposed into the model such that the generated code can
satisfy all the requirements. Finally all source codes
including generated application code, I/O drivers,
communication kernel and operating system code are
integrated.

Requirement Model Syslem Acceptance

Test Specification Acceptance test
Test Plan =
o ~
- B
System Design WD System Integration
Qo
—
System Test Scenario @.‘ ° rtar Vo
System Model Test o] ATSERELSS
i
o -
|
Component Desian Component Integration
H/W S/W Desian e >
Comonent Test Scenario Component integration test
Component Model Test Network Test
-1

|
S/W, H/W Implementation

Implemenatation test
S/W H/W integration test
Unit Test

Fig. 1 Model-based test and development process

2.2. Model-based test process

Test process also follows model-based development
process, but testing should be performed separately to
the design. Fig. 1 describes model-based test process
linked to development process.

Clear understanding of the system requirements
should be preceded before getting down to testing.
Exact I/O signals to be tested and test specification are
defined by analysis of overall system structure,
functional behavior so that test result is reliable and
automated testing is performed efficiently.

Test cases which are simple, atomic and formal
should be prepared based on the test requirements. The
reason is that, complex test cases can make errors when
executing the test case.

A test system capable of automatic testing is needed.
Depending on the development process and the system

After test execution, the test results should be
analyzed to unveil the error that caused a test to fail and
discovered errors are needed to be fixed. Test results
and related information should be documented
throughout all test processes.

3. TEST AUTOMATION TECHNIQUES

3.1 Overview of test automation

Since there are huge numbers of test cases to execute
in automotive embedded software, it is obvious that
Automation is required to maximize coverage and
reliability.

In this paper, several techniques are presented
regarding automated testing that can cover requirements
testing, functional model testing and auto-generated
code testing. Fig. 2 describes the test phases and
corresponding tool chains for the proposed techniques.
Usually automated testing is consists of test case
generation, test execution, and result analysis shown as
following figure. It is important that these steps are
connected seamlessly at cach test phase

LeRTe ’ Tesl Phase ” Test Case

Test Execution|

|
[Report ’

Statemale
squirement : Simulati
System n{?zl‘;pi:::j” Test-Generatof| Simulation flyact analyzer|
Design - " ‘
Functional Statemale
Ea Model ATG Simulation || rast-Analyzer
Design Testing 1 :
) Recorded -
Implementation Auto- file from larget-Suite |
Desian generated “H" & ftwa larget-Suite |
Code Testing || 22 ¢MTe
simulation

Fig. 2 Tool chain for the test automation

Test-Generator, Test-Analyzer and Target-Suite are
developed for seamless test automation in this paper.
Test-Generator allows test engineer to generate test
cases that can be executed automatically in the
Statemate simulation. Fig. 3 shows Test-Generator
interface that is developed using Excel and Visual Basic
language. If time, steps, input signals and values are
written in the Excel cells and push GENERATION
button, a file containing test cases is generated
automatically.

under .test, different test sys.tems are chos;n. The TEST CASE FILE GENERATION
following table 1 shows a selection of test techniques. —
) e DDM_TES Push Button
Table 1 Test phases and techniques INPUT
0 0 PWR_WIN_ENABLED N PWR_OFF
% 1 4 CHILD_WIN_LOCK_SW N ACC
Test phase Test technique 1 3 WIN_BTN_DRY N RAUN
- - - 1 4 DREY_WIN_BTN_RERT_IO C CRANE
Requirement testing Model in the loop 2 8 C WIN_NO
- - - g 45 Test Cases :I m: EE
Functional model testing Model in the loop . : e T 2
. . . 3 fIN_ o L
Implementation testing Software in the loop 3 2 \,;TLNDSNT’E;LTD[?;V ',:q W:‘?EP’;TCE’;TE
K K K 4 b WIN UP L MT DEY N NEUTEAL
Integration testing Hardware in the loop

4415

Fig. 3 Test-Generator

Since usually test cases are from hundreds to millions,
it is time consuming and not easy to verify numerous
test cases one by one. In this research, Test-Analyzer is
developed in order to analyze test result automatically.
It compares test results from the simulation of the
behavior model with expected results. Fig. 4 shows
analysis result by Test-Analyzer. If an error is detected,
the cell is filled with orange color. Target-Suite will be
introduced for the auto-generated code testing in chapter
3.4 in detail.

OUTPUT-VARIABLES ([_|PASS [IFAIL)

Time Step DOOR_KEY_ | CMD_WIN_ | DRV_WIN_ | DRV_WIN_ | DRYV_WIN_ | DOOR_OPEI
CYL_DRY MTR_DRY | BTM_PASS | BTM_RRLT | BTN_RRRT DRY
0| 4 0 0 0 0 0 0

1 g 2 0 2 2 2

2|2 2 0 4 4 4 1
3 | 15 1 0 4 4 4 1
4 [2 1 1| Detected Error |_# 1
5 | 23 1 1 = . 1
5 | o7 1 1 4 A A 1
7 | a0 1 1 1 A 4 1
g | 33 1 1 4 4 4 1
g | =7 1 1 4 4 4 1
10 [40 1 1 4 4 4 1
] 43 1 1 4 A A 1

Fig. 4 Test-Analyzer

3.2 Requirement testing

Requirement testing is performed to ensure that
created behavior model is consistent with the
requirements. Requirement based test cases might be
automatically generated by translating requirements into
formal language, however it is known that the most
reasonable method is to express requirements in
narrative language. In this study, test cases are
generated manually by test engineer with
Test-Generator, generated test cases are executed in the
Statemate simulation and the results are analyzed with
Test-Analyzer.

Fig. 5 shows test cases generated by Test-Generator
based on the functional requirements. Generated test
cases are executed automatically in the Satemate
simulation. And then test results are easily evaluated
with Test-Analyzer.

[Froject Hame: WIN _TEST_B1

Work Area Directory: d:/18_Working/HODERATO_KUHDH/wa_win_test 81
Profile Mame: test_ddm_ 182

Date/Time Produced: Wed Apr 19 89:19:10 2866

Recorded time mode: Relative

Recording starts at simulation time: @.008688

#ibata Section:

0.000000 @ DDH_TARGET_SUITE:DOOR_KEY_CYL_DRU_IO H @
1.000060 4 DDHM_TARGET_SUITE:DRU_WIN BTH RRLT_IO H 2
1.000000 4 DDHM_TARGET_SUITE:DRU_WIN BTH_PASS_IO N 2
1.000000 4 DDH_TARGET_SUITE:DOOR_OPEN DRU_ID C 1
2.000000 8 DDHM_TARGET_SUITE:DRU_WIN BTH RRLT_IO N 4
2.000000 8 DDHM_TARGET_SUITE:DRU_WIN BTH PASS_IO N 4
2.000000 8 DDHM_TARGET_SUITE:PWR_WIN ENABLED C @
3.000000 11 DDM_TARGET_SUITE:DOOR_KEY_CYL_DRU IO H 2
3.000060 11 DDM_TARGET_SUITE:DRU_UWIN BTH RRRT_IOD H @
4.000000 15 DDM_TARGET_SUITE:DOOR_KEY_CYL_DRU IO N 2
4.000000 15 DDM_TARGET_SUITE:WIN BTH DRU N 3
4.000000 15 DDM_TARGET_SUITE:DRU_UWIN BTN RRRT_IO N @
4.

15 DDM_TARGET_SUITE

:PUR_WIN_EMABLED C 1|

Fig. 5 Test cases generated by Test-Generator

4416

Static error checking should be preceded prior to test
execution. If there is any static error, test execution may
not be operated and exact test result can not be expected.
Check model from the Statemate menu helps to unveil
static error in the model.

3.3 Functional model testing

In order to generate test cases automatically uses
ATG which is Statemate plug-in program. Test stimuli
and the expected responses are computed by based on
selected activity charts and test goal is selected to cover
outputs, states or transition. Two kinds of files are
obtained after ATG execution. One is test cases which
can be executed in the Statemate simulation. The other
is report file including test coverage information.

AUTO_OPERATIGH-raise
T
mot D L2AT] st v
ot WAl B TALL] st wnns
a0 0\l TRk [, i

s

£y
e)

)
TALLY and
A7

or
\I—l AUTO_OPERA

AW

State Charts l
) RS

_orenat
5

| B TRAE AKTI BEVERSE)
ALY G GUERA 1Ot aine

LP] i
svaLL

] Sl
T DRV 1

v vy
A Locskfune ""§

nooe_orcu_oev_ |

SRR
enb O ATHOCEO0)
=)

Simulation Pa
SRR
e

CRD_UTH_BTH_
) LED_RERT

Fig. 6 Model in the loop simulation in Statemate

Statemate simulation executes generated test cases
automatically. Stimuli and simulated output values are
recorded into files during the simulation. The simulated
responses are compared with the expected result with
Test-Analyzer. If an error is detected, testing should be
performed step by step to find cause of an error. Fig. 6
illustrates error fixing process using virtual panel and
state charts.

Since early functional model may contain errors, in
order to correct these errors, generating test cases, test
execution and analysis result are repeated several times.
This process is inevitable but labor-intensive and
time-consuming. Automating this process leads to
increasing correctness and reliability and reducing time
and efforts on testing.

3.4 Auto-generated code testing

After completing validation of behavior model, C
code is generated automatically by Statemate. There
might be differences in task execution time and values
between simulation of behavior model running in PC
and auto-generated code running in a real ECU
environment. Target-Suite provides automated testing
environment for the auto-generated code.

Target-Suite consists of hardware equipment and
control software. Hardware comprises of two main
boards: one is target board and the other is data
acquisition board. And there are two control software
programs. One is Target-Practice which can map /O
signals of the functional model with a real ECU model.
The other is Target-Monitor which analyzes and shows
the execution result on PC monitor. Fig. 7 depicts the
picture of Target-Suite.

¥ Communication
Cable

Fig. 7 Target-Suite

To test generated application code running in ECU
environment, Statemate 1/0 signals should be mapped to
ECU I/O ports. When generating code, these mapped
I/O signals are considered automatically. Fig. 8 shows
signal mapping from functional model to target ECU by
drag and drop.

E Target Practice

Fis Hep
oE ¥
WIN_TEST_D1 x
Sign{ Target ECU I/O Port | Signalsl ECU Model IfO Signals
- & TR - s{in “TOTar 2, CTTe e 1
= "y fnalog Mapped: 5, Availabl,., 4 Character Total: 0. Unmapped: 0
L] DOORKEY.CYLDR., + “3 Condison Total: 3. Unmapped: 0
LR} DRV.WIN_BTN.PAS., = "oj Enumeration Total: 5. Unmapped: 0
. AR DRV_WIN_BTN P~ DOOR_KEY_CYLDR,.,
P DRV_W b g LBTNPAS...
® & Signal Mapping LBTNRAL..
Py (Drag and Drop) LBTNRAR...
+ "y Digital Mappeu. 1.DRYV
= " Network "f Float Total: 0. Unmapped: 0
= “%| Character Mapped: 0 Jorirneger Total: 0, Unenapped: 0
a Miromn i Tatalt 7 Hnmmannad:

Fig. 8 Target-Practice

Fie Help
-
| Peset 1 |
Input
Expected Time (s) Actual Tim, Target Signal Model Signal Walue Sent
g Initial Condis.
®AME WILE. 1{Trug)
BATH = 1
75 4 Test case input
- 108 0
-2
1298 A
w206 A WIN_BTN.DR
Output
Expected Time (s) Actual Tim.,, Target Signal Model Signal Expected ... Actual Value Description
g Initial Condi
=305 Missing
.-.H Execution time and value Analysis m
<4 5 I Captured valus
<7358 B3 NOI0D CMD_WIN_MTR.DAV L] o Captured value
<a3%8 5355975 NOIDY CMDWINMTRDRY 2 2 Captured value
<108 17685 NOID CMD_WIN_MTR_DRYV 0 0 Captured value
&R 1R ISR NOin N WIN MTR DAY 1 1 Cantirad valiu

Fig. 9 Target-Monitor

4417

Target-Monitor analyzes and compares execution
time and values between different environments and
shows the test results on PC. Fig. 9 shows validating
results by Target-Monitor.

4. CASE STUDY

Proposed test automation techniques for automotive
embedded systems are applied to window lift system.

4.1 window lift system

The functional model of window lift system is
designed by Statemate. This system consists of 4 door
modules and BCM(Body Control Module) and each
ECU is connected by CAN/LIN network. Fig. 8 shows
physical architecture of window lift system and activity
charts of DDM.

WIN_PHY_ARCH

@DDM
T
DDM_2_LSCAp | SCAN_2_DDM
@RLDM | ES—— __Ls.ca —
) BCM_2_LSCAN LSCAN_2_§
RLDM_2 lei hlu 2_RLDM Ls@ PDM1 | PDM_2_LSCAN
AR - T e 1)
. Iy - @BCM @PDM
S S, S

LEN_Z_RHDP& RDM_2_LIN

i DOOR_KEY_CYL_DRV_LO DOOR_KEY_CYIL _DRV

[
e e
|
DOOR_OPEN_DRV_IO it ! ——#! DOOR_OPEN_DRV
| 1
CHILD _MIN LOCK SH : | i ! CHILD_MIN_LOCKED
| conren srorser-
PHR_WIN_ENABLED 1 -
: v s H»i & LEDSDRV
: DRV_MIN_BTHN_| _I0 WS ——»1 DRV_MWIN_BTN_PASS

! DRV_MIN_BTH_RRLT_IO

1 REQ_WIN_MTR_DRV
i\ DRV_WIN_BTM_RRRT_IO -

> AUTO_OPERATION_DRV ——#}

“AUTO_OPERATION_DRV

DRV_MIN_BTH_RRLT
DRV_WIN_BTH_RRRT

WIN_UP_LMT_DRV
WIN_DN_LMT_DRV
MIN_STALL_DRV

] - CHD_WIN_MTR_DRV

Fig. 10 Functional model of window lift system

4.2 Requirements testing

According to the functional requirements, about 50
test cases are generated for each ECU model with
Test-Generator. Statemate simulation executes
generated test cases automatically and Test-Analyzer
analyzes the simulated result in order to verify the
model.

4.3 Functional model testing

ATG was used to generate test cases automatically in
order to validate each ECU model. Test goal is set to
cover all states and transitions and about 300 test cases
are generated for each ECU model.

Generated test cases are automatically executed in
the Statemate simulation and the simulated responses
are analyzed by Test-Analyzer which compares with the
expected result form ATG.

4.4 Auto-generated code testing

After the model validation is complete, software of
cach ECU is auto-gencrated and downloaded into
Target-Suite to test performance and functionality of the
software before hardware is built. Recorded file during
Statemate simulation is used for the stimuli to the
Target-Suite. Execution time and response value is
validated using Target-Monitor.

5. CONCLUSION

In this research test automation techniques are
proposed for functional model and auto-generated code
running in target ECU. Case study of window lift
system is introduced to apply this automation process.

Erroncous automotive embedded system may result
in serious accident or problem related to human life.
Error detection process is simple and repeated process
that is time consuming. Adaptation of proposed
techniques can reduce time and efforts on testing
dramatically. Furthermore test reliability and
consistency could be increased.

In the future study, test automation process is
expended to network and integration test to realize test
automation through the entire process.

REFERENCES

[1] J. Son, I. Wilson, W. Lee and S. Lee, "Model Based
Embedded System Development for In-Vehicle
Network Systems", SAE, 2006-01-0862, 2006.

Y. Dong, M. Li and R. Josey, "Model Based
Software Development for Automotive
Electronic Control Units", SAFE, 2004-21-0038,
2004

R. Weber, K. Thelen, A. Srivastava and J.
Krueger, "Automated Validation Test
Generation", Digital Avionics ~ Systems
Conference of IEEE, Page 99-104 ,1994.

R. W. Butler, "An Introduction to Requirements
Capture Using PVS: Specification of a Simple
Autopilot”, NASA Technical Memorandum
110255, 1996

C. L. Heitmeyer, R. D. Jeffords and B.G. Labaw,
"Automated Consistency Checking of
Requirements Specifications”, ACM
Transactions on Software Engineering and
Methodology, vol. 5, No. 3 , Page 231-261,
1996.

Y. G. Kim, H. S. Hong, D. H. Bae and S.D.Cha,
"Test Cases Generation from UML State
Diagrams", [FE proceedings, online no.
199990602, 1999

N. H. Lee and S. D. Cha, "Generation Test
Sequences from a Set of MSCs", The
International Jowrnal of Computer and
Telecommunications Networking, Volume 42 |
Issue 3, Page 405-417,2003

R. L. Probert, H. Ural and A.W.Williams, "Rapid

2]

131

[4]

[5]

6]

171

18]

4418

9]

Generation of Functional Tests using MSCs,
SDL and TTCN", Computer Communications,
Volume 24, Issues 3-4, Page 374-393, 2001

D. L. kaleita and N. Hartmann, "Test
Development Challenges for Evolving
Automotive Electronic Technologies", SAE,

2004-21-0015, 2004.

