
2007-01-0503

Model-Based Automated Validation Techniques for Automotive
Embedded Systems

Daehyun Kum, Joonwoo Son, Seonbong Lee
Daegu Gyeongbuk Institute of Science & Technology – Department of Mechatronics

Ivan Wilson
DsysD Ltd.

Copyright © 2007 SAE International

ABSTRACT

Model-based approaches can improve quality and
reduce cycle time by simulating the models to perform
early validation of requirements. These approaches can
provide the automated validation techniques by
generating test cases from the model. This paper
describes model-based automated test techniques in all
phases of the product life cycle to maximize the early
validation capabilities of model-based development
processes. The paper proposes the model-based test
process framework for all modeling phases including
system model, architectural model and auto-generated
software, and test automation technique which consists
of automatic test generation, execution and analysis. A
Test Management System, which enables the automatic
generation of requirement-based test cases, analysis of
the test results and test database management through
entire test process, is developed through this study. In
addition, an automatic target execution system, which
comprises target hardware, simulation command
transmission and target monitoring software, was
developed to test the auto-generated ECU code on the
real target system in the early stage.

INTRODUCTION

The Automotive embedded system becomes even more
complex and occupies a greater portion of vehicle price.
In order to design products which improve reliability and
quality as well as reduce development time and cost,
automotive industries have been focusing on well
structured development processes such as model-based
approaches [1][2]. But to meet demand for high quality
and lower cost it is becoming increasingly necessary to
rely on new test systems and methodologies in all
phases of the product life cycle. Erroneous automotive
embedded software may cause serious car accidents
which relate to human safety. Therefore, it is essential to
detect any errors in the embedded software through all
test processes. The embedded software is often subject
to change to meet new customer needs and revised

legal requirements, so it is desirable to automate testing
to improve the efficiency of the process.

Test automation consists of the following three parts:
test case generation, test execution and analysis
reporting. Many research efforts have been made for
these automation techniques. During the requirement
capturing phase, automated testing can be realized by
introducing formal language [3][4][5]. Automatic
generation of test cases from statecharts, control flow,
information flow and MSCs(Message Sequence Charts)
are widely used for specifying the dynamic behavior of
the model [6][7][8], and automation concerning test
systems and processes has been presented [9].
However, research on seamless test automation
process based on the model-based approach has not
been applied.

In this paper, an automated validation process
framework for all phases of the product life cycle and
automated testing techniques are proposed to help the
seamless validation process. The proposed automatic
testing techniques consist of a Test Management
System (TMS) which assists requirement-based test
cases generation, automatic test execution, automatic
analysis report generation and test database
management and an Automatic Test Execution System,
namely Target Practice, which comprises target
hardware, simulation command transmission software
and target monitoring software for auto-generated
software testing. In order to show the effectiveness of
the proposed process and techniques, a case study on
automotive network system for window lift feature was
demonstrated. Where Target-Practice is used to test
automatically on a real target.

MODEL-BASED AUTOMATED VALIDATION
PROCESS FRAMEWORK

During automotive embedded system development,
testing is repeated in each development phase,
validating the design at every step. The substantial

benefit of the model-based method is to the ability to
automate the entire test process by generating the test
cases from the model. Figure 1 shows the model-based
design and validation process. In this section, we will
discuss about model-based automated validation
process framework based on this process.

MODEL-BASED TEST PROCESS

The model-based test process like the model-based
development process follows the typical V-process,
however the testing should be performed separately
from the design. Development starts with requirements
capture and analysis. The success of any product
development depends on the creation of clear and
unambiguous requirements. A clear understanding of
the system requirements must precede testing.
Functional models should be created according to the
requirements. The vehicle electronic system is too large
to be addressed singularly so it is often decomposed
according to functional groups. Once the main sub-
systems have been identified their input and output
signals should be clearly defined. Also the exact test
signals should be defined so that the test result is
reliable and automated testing is performed efficiently.
At the early stages of the system development virtual
prototypes of the functional models enable us to test and
validate the software functionality without hardware.
Once the system and component design have been
validated in the virtual environment, the designs should
be moved to the implementation phase. To generate
code for embedded applications the model must be
enhanced to include the software design and
implementation details. These newly added items
impose execution constraints on the model, however the
system must still satisfy all the requirements. This
implementation model should be validated. Finally, all
the source code including the generated application
code, I/O drivers, the communication kernel and
operating system code are integrated.

Figure 1.Model-based design and validation process

Test results from an ideal PC environment may differ
from those where the model runs in a real target, so
software performance and functionality must be tested in
a target ECU. Then an integration test is performed to
see if the complete integrated system satisfies the
specifications.

TEST AUTOMATION IN MODEL-BASED PROCESS

Test automation is composed of three parts:
• Automatic test case generation
• A test execution system
• Test results analysis and documentation

The first test cases should be created manually based
on the requirements. The simple, atomic and formal test
cases are suitable for automation. Complex test cases
can lead to errors when executing the tests
automatically. A test system capable of automated
testing is needed for each test phase. Depending on the
development phase and the system under test, different
test systems are chosen. The following, table 1, shows a
selection of test techniques. After test execution, the test
results should be analyzed to find and correct any errors.
Test results and related information should be
documented throughout all test processes. Therefore,
test management system and automatic target execution
system are developed to support test automation in
model-based approach.

Table 1 Test phases and techniques

Test phase Test technique

System model testing
Model in the loop
simulation

Implementation testing
Software in the loop
simulation

Integration testing
Hardware in the loop
simulation

AUTOMATED TESTING TECHNIQUES

TEST MANAGEMENT SYSTEM

Usually there are millions of test cases to be performed
on automotive embedded software, it is time consuming
and difficult to execute and verify all these test cases
one by one. It is obvious that automation can help to
maximize coverage and reliability. In this chapter,
several technologies are presented regarding automated
testing, along with how they are all effectively
coordinated and the data managed via a Test
Management System.

Test case generation

In order to get the most benefit from the test cases and
automate the testing process a Test Management

System was developed. The Test Management System
was designed to support both manual and automatic test
creation methods and to support the reuse of the test
cases throughout the whole process. Figure 2 shows
test cases written in the Test Management System. In
the picture, the upper table is for input and the lower
table is for expected responses.

Requirement based test case

To ensure that the functional model is designed
according to the requirements, test cases based on the
requirements are created manually by a test engineer.
Requirement based test cases might be automatically
generated by translating requirements into a formal
language. However, the most common method is to
express requirements in narrative language. The Test
Management System can help describe test scenarios
easily and generate test cases based on the test case
templates.

Automatic test case generation from the model

Automatic test generation has the great benefit of high
test coverage and accuracy in model-based
development process. Intensive test cases can be
generated automatically from a system model. Some
modeling tools provide automatic test generation tool
kits.

Figure 2. Test cases viewer in Test Management
System

Automated testing flows and tool chains

Figure 3 describes the testing flows and tool chains for
the proposed automated testing technique. As
mentioned before, automated testing consists of test
case generation, test execution, and result analysis
shown as above. It is important that these steps are
connected seamlessly at all test phases. Automatically
and manually created test cases are imported into the
Test Management System in a generalized format
shown in Figure 2. This enables the test results to be
automatically evaluated with the Test Management
System.

The functional model can be designed in Telelogic’s
Statemate or Mathworks’ MATLAB/Simulink/Stateflow. In
order to generate test cases automatically, ATG which is
a Statemate plug-in program or T-VEC Tester which is a
3rd party tools in Simulink can be used. The test cases
are executed on three kinds of test platforms. The model
simulation feature can be used for system model testing.
A rapid prototyping system is used for auto-generated
code testing and Vector’s CANoe for network integration
testing.

Static error checking and formal validation should
precede test execution. If there are any errors test
execution should not be operated as exact test results
can not be expected. Statemate has Model
Checker/Certifier and MATLAB has Safety-Checker
Blockset to help to unveil errors in the model.

AUTOMATIC TEST EXECUTION

System model testing

System model testing is executed to verify if the model is
designed according to the requirements. The
requirement based test cases are generated by the Test
Management System as a file to stimulate the functional
model. The model outputs are recorded during the
simulation. The Test Management System collects the
test results and manages the data.

Figure 3. Automated testing flows and tool chains

The responses are compared with the expected results
in the Test Management System. If an error is detected,
the Test Management System highlights the problem in
red. Figure 4 shows an analysis of simulated results.
Early system models usually contain errors.
Consequently correcting the errors, rerunning the tests
and analyzing the results are repeated several times.
This process is inevitable, labor-intensive and time-
consuming. Automating this process leads to increasing
accuracy and reliability as well as reducing testing time
and effort.

Automatic Target Execution System

After validating the functionality C code is auto-
generated from the models. Due to possible differences
in execution time and response values between
simulations of functional models running on the PC and
the auto-generated code running in a real ECU, the
auto-generated code must be validated. The automatic
target execution system, namely Target-Practice,
provides the rapid-prototyping environment, easy
hardware input and output configuration and real-time
software testing on a real target to do this validation.

Target-Practice consists of hardware equipment and
control software. The hardware comprises of a target
ECU and a data acquisition board. Control software is
used to map I/O signals of the functional model to the
real ECU I/O as well as control, monitor and test the
model running on the target. Figure 5 shows a photo of
Target-Practice.

Figure 4. Analysis of Simulated results

Figure 5. Target-Practice

The automated testing facility within Target-Practice is
designed for model-based development processes. Test
cases created while simulating the model in Statemate
can be rerun on the Target-Practice rapid-prototyping
hardware. This enables the model to be validated
against the real hardware using the same tests as on the
PC. The simulated results are deemed the expected
results and are automatically compared to the rapid-
prototype results so that faults can be instantly detected.
To further extend the process to include all test cases
the Test Management System was configured to create
test cases in the correct format for Target-Practice.
Figure 6 shows validating results by Target-Practice.

Network integration testing

Automotive network communication tests are performed
to ensure that the ECUs are sending CAN messages
and data as specified. Each ECU should send a certain
number of messages on the bus with specified time
intervals. Network test and analysis for the CAN bus
system is performed with CANoe. CANoe supports
sequential test procedures described in a proprietary
language called CAPL (CANoe Application
Programming Language). A test report is automatically
written during execution of a test.

The application software for each ECU is generated
from the model. The model I/Os are mapped to network
signals so the application can communicate on the bus.
The test cases in the Test Management System are
automatically reconfigured into CAPL files for automated
testing of network communication and functionality. The
CAPL file for automated testing consists of MainTest,
Testcase and suporting Functions. MainTest calls
test cases, and writes test information into the report file.
TestCase is composed of individual test steps which
create test results. Functions are used as storage for
input signals and expected responses. Figure 7 shows
CAPL files automatically generated by the Test
Management System. Test report contains the verdict of
each test step. So if an error is detected, the time and
signal of the error can be easily checked.

Figure 6. Analysis results of ECU code testing

Detected error

Figure 7. A CAPL file from Test Management System

CASE STUDY – WINDOW LIFT SYSTEM

The proposed test automation techniques for automotive
embedded systems are applied to the window lift system.
A functional model of the system-under-design was
developed using Telelogic’s Statemate. Test cases were
automatically created by ATG (Automatic Test
Generation, a Statemate add-on tool also available from
Telelogic) which automatically generates test cases from
a Statemate model. The generated test cases were
imported into the Test Management System. The
window lift system consists of 4 door modules and a
BCM (Body Control Module) and each ECU is
connected by CAN/LIN network. Figure 8 shows the
physical architecture of a window lift system and the
functional decomposition of the DDM (Driver Door
Module).

TEST CASE GENERATION

Test cases are automatically created from the Statemate
model with ATG and manually created based on the
requirements. ATG creates two files; a test case file and
an accompanying report file detailing test coverage
information. About 2,000 test cases are created for the
window lift system and these generated test cases and
expected results are automatically imported into the Test
Management System. Figure 9 shows the user interface
of the Test Management System for created test case
import and generation of each test phase.

FUNCTIONAL MODEL TESTING

The functional model of a whole window lift system and
5 ECU modules are tested. All functional requirements
are satisfied. A file containing test cases is created with
the Test Management System and the generated file

executes Statemate simulations automatically and the
simulated responses are saved to a file. The saved
outputs are compared with the expected results from the
Test Management System.

SOFTWARE TESTING

After the model validation is complete, ECU software of
the window lift system is auto-generated and
downloaded into the rapid-prototyping hardware, Target-
Practice, to test performance and functionality of the
software before hardware is built. This test is separately
performed for the 5 ECUs.

Figure 8. Functional model of window lift system

Figure 9. User interface of the Test Management
System for test case import and test case generation

NETWORK INTEGRATION TESTING

Integration tests are performed to see how different
individual systems work together in an automotive
network system. Interval time, busload, and transmission
and receiving of signals satisfy the specifications for a
window lift system. All five network nodes are tested
separately. Figure 10 shows a network system of a
window lift system and testing environment.

Figure 10. CANoe Simulation for network testing

CONCLUSION

The model based development process is becoming
popular in the automotive industry because of its
benefits such as low cost and short time to market.
Automated testing technologies are needed to
accelerate the benefits of the model based method. In
this study, automated testing technologies are presented
for all test processes. A case study of the window lift
system is introduced to apply this automation process.

A Test Management System is developed through this
study, which enables us to generate test cases and
analyze test results automatically through entire test
process. In addition, Target-Practice is employed for
auto-generated ECU code testing. The error detection
process is a simple and repeated process and it is time
consuming. Adaptation of the proposed technologies
can reduce the time and effort of testing dramatically.
Furthermore, test reliability and consistency could be
improved.

REFERENCES

1. J. Son, I. Wilson, W. Lee and S. Lee, "Model
Based Embedded System Development for In-
Vehicle Network Systems", SAE, 2006-01-0862,
2006.

2. Y. Dong, M. Li and R. Josey, "Model Based
Software Development for Automotive Electronic
Control Units", SAE, 2004-21-0038, 2004

3. R. Weber, K. Thelen, A. Srivastava and J. Krueger,
"Automated Validation Test Generation", Digital
Avionics Systems Conference of IEEE, Page 99-
104 ,1994.

4. R. W. Butler, "An Introduction to Requirements
Capture Using PVS: Specification of a Simple
Autopilot", NASA Technical Memorandum 110255,
1996

5. C. L. Heitmeyer, R. D. Jeffords and B.G. Labaw,
"Automated Consistency Checking of Requirements
Specifications", ACM Transactions on Software
Engineering and Methodology, vol. 5, No. 3 , Page
231-261, 1996.

6. Y. G. Kim, H. S. Hong, D. H. Bae and S.D.Cha,
"Test Cases Generation from UML State Diagrams",
IEE proceedings, online no. 199990602, 1999

7. N. H. Lee and S. D. Cha, "Generation Test
Sequences from a Set of MSCs", The International
Journal of Computer and Telecommunications
Networking, Volume 42 , Issue 3, Page 405 - 417,
2003

8. R. L. Probert, H. Ural and A.W.Williams, "Rapid
Generation of Functional Tests using MSCs, SDL
and TTCN", Computer Communications, Volume 24,
Issues 3-4, Page 374-393, 2001

9. D. L. kaleita and N. Hartmann, "Test Development
Challenges for Evolving Automotive Electronic
Technologies", SAE, 2004-21-0015, 2004.

